Flocking-based Document Clustering on the Graphics Processing Unit
نویسندگان
چکیده
Analyzing and grouping documents by content is a complex problem. One explored method of solving this problem borrows from nature, imitating the flocking behavior of birds. Each bird represents a single document and flies toward other documents that are similar to it. One limitation of this method of document clustering is its complexity O(n). As the number of documents grows, it becomes increasingly difficult to receive results in a reasonable amount of time. However, flocking behavior, along with many naturally inspired algorithms such as ant colony optimization and particle swarm optimization, are highly parallel and have found increased performance on expensive cluster computers. In the last few years, the graphics processing unit (GPU) has received attention for its ability to solve highlyparallel and semi-parallel problems much faster than the traditional sequential processor. Some applications see a huge increase in performance on this new platform. The cost of these high-performance devices is also marginal when compared with the price of cluster machines. In this paper, we have conducted research to exploit this architecture and apply its strengths to the document flocking problem. Our results highlight the potential benefit the GPU brings to many naturally inspired algorithms. Using the CUDA platform from NIVIDA, we developed a document flocking implementation to be run on the NIVIDA R ©GEFORCE 8800. Additionally, we developed a similar but sequential implementation of the same algorithm to be run on a desktop CPU. We tested the performance of each on groups of news articles ranging in size from 200 to 3000 documents. The results of these tests were very significant. Performance gains ranged from three to nearly five times improvement of the GPU over the CPU implementation. Our results also confirm that each implementation is of similar complexity, confirming that gains are from the hardware and not from algorithmic benefits. This improvement in runtime makes the GPU a potentially powerful new platform for document analysis.
منابع مشابه
Graphics Processing Unit Enhanced Parallel Document Flocking Clustering
Abstract: Analyzing and clustering documents is a complex problem. One explored method of solving this problem borrows from nature, imitating the flocking behavior of birds. One limitation of this method of document clustering is its complexity O(n). As the number of documents grows, it becomes increasingly difficult to generate results in a reasonable amount of time. In the last few years, the...
متن کاملDirectional Stroke Width Transform to Separate Text and Graphics in City Maps
One of the complex documents in the real world is city maps. In these kinds of maps, text labels overlap by graphics with having a variety of fonts and styles in different orientations. Usually, text and graphic colour is not predefined due to various map publishers. In most city maps, text and graphic lines form a single connected component. Moreover, the common regions of text and graphic lin...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملGPU enhanced parallel computing for large scale data clustering
Analyzing and clustering large scale data set is a complex problem. One explored method of solving this problem borrows from nature, imitating the flocking behavior of birds. One limitation of this method of data clustering is its complexity O(n2). As the number of data and feature dimensions grows, it becomes increasingly difficult to generate results in a reasonable amount of time. In the las...
متن کاملA Distributed Agent Implementation of Multiple Species Flocking Model for Document Partitioning Clustering
The Flocking model, first proposed by Craig Reynolds, is one of the first bio-inspired computational collective behavior models that has many popular applications, such as animation. Our early research has resulted in a flock clustering algorithm that can achieve better performance than the Kmeans or the Ant clustering algorithms for data clustering. This algorithm generates a clustering of a g...
متن کامل